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It has been pointed out to us by E. B. Saff that our proof [1], that there is
a parabolic domain which is free of zeros of

n

Sn(z) = L zkJk!
k=O

(1)

for n sufficiently large, is incorrect. We present here a proof that there is a
parabolic domain (smaller than the one claimed in [1]) free of zeros of Sn(z)
for all n.

Write z = x + iy and suppose y2 :::;; ex, where e is any positive number
satisfying eee < (7T12). For example e = 0.7 may be substituted in what
follows.

Case (i). 0:::;; x :::;; n.

so that
1111

n! ISn(z) I ~ n! Sn(x) - f I x ± is In ds
o

~ n! Sn(x) - Iy I (x2 + y2)n/2

~ n! Sn(x) - Iy I (x2 + ex)n/2.
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(2)

(3)



300 NEWMAN AND RIVLIN

We claim next that 0 ~ x ~ n implies that

(4)

To see this, note that in view of (2) it suffices to show that

(5)

moreover, (5) holds for 0 ~ x ~ n if it holds for x = n. This is, in turn,
a consequence of the inequality

or

or

(n + nu)n e-ln+nu) ;? (n - nu)n e-(n-nu),

(l + u) r(l+u) ;? (1 - u) r(1-u),

0< u < 1,

0< u < 1,

0< u < I,(1 + u)j(l - u) ;? e2u,

which is well known.
Using (4) in (3) we obtain

n! ISnCz) I ;? (n!eX j2) - (nc)1/2(x + (c/2»n

;? (ex /2)(n! - 2(nc)l/2(x + (cj2»n e-X
).

But

(x + (cj2»n r X ~ e(C/2)(nje)n,

while n! > (27Tn)l/2(nje)n, and so

n! ISn(z) I ;? (ex /2) n1/2«27T)1/2 - 2c1/2eC/2)(nje)n > O.

Case (ii). n < x. It is an easy consequence of the Enestrom-Kakeya
theorem on polynomials with monotone coefficients (see [2]) that all zeros
of Sn(z) lie in Iz I ~ n, and so the region x > n is free of zeros. This simple
observation due to a student of Richard Varga, W. Ni, replaces an elaborate
discussion of this case that we had devised.

Thus, we have shown that ify2 ~ ex, Sn(x + iy) =1= 0 for any n.
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